Comparison of multi-paradigm programming languages
Programming languages can be grouped by the number and types of paradigms supported.
Paradigm summaries
A concise reference for the programming paradigms listed in this article.
- Concurrent programming – have language constructs for concurrency, these may involve multi-threading, support for distributed computing, message passing, shared resources (including shared memory), or futures
- Actor programming – concurrent computation with actors that make local decisions in response to the environment (capable of selfish or competitive behaviour)
- Constraint programming – relations between variables are expressed as constraints (or constraint networks), directing allowable solutions (uses constraint satisfaction or simplex algorithm)
- Dataflow programming – forced recalculation of formulas when data values change (e.g. spreadsheets)
- Declarative programming – describes what computation should perform, without specifying detailed state changes c.f. imperative programming (functional and logic programming are major subgroups of declarative programming)
- Distributed programming – have support for multiple autonomous computers that communicate via computer networks
- Functional programming – uses evaluation of mathematical functions and avoids state and mutable data
- Generic programming – uses algorithms written in terms of to-be-specified-later types that are then instantiated as needed for specific types provided as parameters
- Imperative programming – explicit statements that change a program state
- Logic programming – uses explicit mathematical logic for programming
- Metaprogramming – writing programs that write or manipulate other programs (or themselves) as their data, or that do part of the work at compile time that would otherwise be done at runtime
- Template metaprogramming – metaprogramming methods in which a compiler uses templates to generate temporary source code, which is merged by the compiler with the rest of the source code and then compiled
- Reflective programming – metaprogramming methods in which a program modifies or extends itself
- Object-oriented programming – uses data structures consisting of data fields and methods together with their interactions (objects) to design programs
- Class-based – object-oriented programming in which inheritance is achieved by defining classes of objects, versus the objects themselves
- Prototype-based – object-oriented programming that avoids classes and implements inheritance via cloning of instances
- Pipeline programming – a simple syntax change to add syntax to nest function calls to language originally designed with none
- Rule-based programming – a network of rules of thumb that comprise a knowledge base and can be used for expert systems and problem deduction & resolution
- Visual programming – manipulating program elements graphically rather than by specifying them textually (e.g. Simulink); also termed diagrammatic programming[1]
Language overview
Language | Paradigm count |
Concurrent |
Constraints |
Dataflow |
Declarative |
Distributed |
Functional |
Metaprogramming |
Generic |
Imperative |
Logic |
Reflection |
Object-oriented |
Pipelines |
Visual |
Rule-based |
Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ada | 5 | Yes | — | — | — | Yes | — | — | Yes | Yes | — | — | Yes | — | — | — | — |
ALF | 2 | — | — | — | — | — | Yes | — | — | — | Yes | — | — | — | — | — | — |
AmigaE | 2 | — | — | — | — | — | — | — | — | Yes | — | — | Yes | — | — | — | — |
APL | 3 | — | — | — | — | — | Yes | — | — | Yes | — | — | — | — | — | — | Array (multi-dimensional) |
BETA | 3 | — | — | — | — | — | Yes | — | — | Yes | — | — | Yes | — | — | — | — |
C++ | 7 (15) | Yes | Library | Library | Library | Library | Yes | Yes | Yes | Yes | Library | Library | Yes | Yes | — | Library | Array (multi-dimensional; using STL) |
C# | 6 (7) | Yes | — | Library | — | — | Yes | — | Yes | Yes | — | Yes | Yes | — | — | — | Reactive |
ChucK | 3 | Yes | — | — | — | — | — | — | — | Yes | — | — | Yes | — | — | — | — |
Claire | 2 | — | — | — | — | — | Yes | — | — | — | — | — | Yes | — | — | — | — |
Clojure | 5 | Yes | — | — | Yes | — | Yes | Yes | — | — | Library | — | — | Yes | Editor | — | Multiple dispatch, |
Common Lisp | 7 (14) | Library | Library | Library | Yes | Library | Yes | Yes | Yes | Yes | Library | Yes | Yes | Library | Library | Library | Multiple dispatch, meta-OOP system, |
Curl | 5 | — | — | — | — | — | Yes | — | Yes | Yes | — | Yes | Yes | — | — | — | — |
Curry | 4 | Yes | Yes | — | — | — | Yes | — | — | — | Yes | — | — | — | — | — | — |
D (version 2.0) | 7 | Yes | — | — | — | — | Yes | Yes | Yes | Yes | — | Yes | Yes | — | — | — | — |
Delphi | 3 | — | — | — | — | — | — | — | Yes | Yes | — | — | Yes | — | — | — | — |
Dylan | 3 | — | — | — | — | — | Yes | — | — | — | — | Yes | Yes | — | — | — | — |
E | 3 | Yes | — | — | — | Yes | — | — | — | — | — | — | Yes | — | — | — | — |
ECMAScript | 4 (5) | Partial | — | — | Library | — | Yes | — | — | Yes | — | Yes | Yes | Library | Editor | — | Reactive, |
Erlang | 3 | Yes | — | — | Yes | Yes | Yes | — | — | — | — | — | — | Yes | — | — | — |
Elixir | 4 | Yes | — | — | — | Yes | Yes | Yes | — | — | — | — | — | Yes | — | — | — |
Elm | 6 | Yes | — | Yes | Yes | — | Yes (pure) | — | Yes | — | — | — | — | Yes | — | — | Reactive |
F# | 7 (8) | Yes | — | Library | Yes | — | Yes | — | Yes | Yes | — | Yes | Yes | — | — | — | Reactive |
Fortran | 4 (5) | Yes | — | — | — | — | Yes | — | Yes | — | — | — | Yes | — | — | — | Array (multi-dimensional) |
Go | 4 | Yes | — | — | — | — | — | — | — | Yes | — | Yes | — | Yes | — | — | — |
Haskell | 8 (15) | Yes | Library | Library | Yes | Library | Yes (lazy) (pure) | Yes | Yes | Yes | Library | — | Partial | Yes | Yes | Library | Literate, reactive, dependent types (partial) |
Io | 4 | Yes | — | — | — | — | Yes | — | — | Yes | — | — | Yes | — | — | — | — |
J | 3 | — | — | — | — | — | Yes | — | — | Yes | — | — | Yes | — | — | — | — |
Java | 6 | Yes | Library | Library | — | — | Yes | — | Yes | Yes | — | Yes | Yes | — | — | — | — |
Julia | 9 (17) | Yes | Library | Library | Library | Yes | Yes (eager) | Yes | Yes | Yes | Library | Yes | Yes | Yes | — | Library | Multiple dispatch, Array (multi-dimensional); optionally lazy |
Kotlin | 8 | Yes | — | — | — | — | Yes | Yes | Yes | Yes | — | Yes | Yes | Yes | — | — | — |
LabVIEW | 4 | Yes | — | Yes | — | — | — | — | — | — | — | — | Yes | — | Yes | — | — |
Lava | 2 | — | — | — | — | — | — | — | — | — | — | — | Yes | — | Yes | — | — |
LispWorks (version 6.0 with support for symmetric multi-processing, rules, logic (Prolog), CORBA) | 9 | Yes | — | — | — | Yes | Yes | Yes | — | Yes | Yes | Yes | Yes | — | — | Yes | — |
Lua | 3 | — | — | — | — | — | Yes | — | — | Yes | — | — | Yes | — | — | — | — |
MATLAB | 6 (10) | Toolbox | Toolbox | Yes | — | Toolbox | — | Yes | Yes | — | — | Yes | Yes | — | Yes | — | Array (multi-dimensional) |
Nemerle | 7 | Yes | — | — | — | — | Yes | Yes | Yes | Yes | — | Yes | Yes | — | — | — | — |
Object Pascal | 4 | Yes | — | — | — | — | Yes | — | — | Yes | — | — | Yes | — | — | — | — |
OCaml | 4 | — | — | — | — | — | Yes | — | Yes | Yes | — | — | Yes | — | — | — | — |
Oz | 11 | Yes | Yes | Yes | Yes | Yes | Yes | — | — | Yes | Yes | — | Yes | Yes | — | Yes | — |
Perl | 8 (9) | Yes | — | Yes | — | — | Yes | Yes | — | Yes | — | Yes | Yes | Yes | — | — | — |
PHP | 4 | — | — | — | — | — | Yes | — | — | Yes | — | Yes | Yes | — | — | — | — |
Poplog | 3 | — | — | — | — | — | Yes | — | — | Yes | Yes | — | — | — | — | — | — |
Prograph | 3 | — | — | Yes | — | — | — | — | — | — | — | — | Yes | — | Yes | — | — |
Python | 5 (10) | Library |
Library |
— | — | Library |
Yes | Yes |
Yes | Yes | Library | Yes | Yes |
— | Editor | — | Structured |
R | 4 (6) | Library | — | — | — | Library | Yes | — | — | Yes | — | Yes | Yes | Yes | — | — | Array (multi-dimensional) |
Racket | 10 | Yes | Yes | Yes | — | Yes | Yes | Yes | — | Yes | Yes | Yes | Yes | — | — | — | Lazy |
Raku | 10 | Yes | Library | Yes | — | Library | Yes | Yes | Yes | Yes | — | Yes | Yes | Yes | — | — | Multiple dispatch, lazy lists, reactive. |
ROOP | 3 | — | — | — | — | — | — | — | — | Yes | Yes | — | — | — | — | Yes | — |
Ruby | 5 | — | — | — | — | — | Yes | Yes | — | Yes | — | Yes | Yes | — | — | — | — |
Rust (version 1.0.0-alpha) | 6 | Yes | — | — | — | — | Yes | Yes | Yes | Yes | — | — | Yes | — | — | — | Linear, affline, and ownership types |
Sather | 2 | — | — | — | — | — | Yes | — | — | — | — | — | Yes | — | — | — | — |
Scala | 9 | Yes | — | Yes | Yes | — | Yes | Yes | Yes | Yes | — | Yes | Yes | — | — | — | — |
Simula | 2 | — | — | — | — | — | — | — | — | Yes | — | — | Yes | — | — | — | — |
SISAL | 3 | Yes | — | Yes | — | — | Yes | — | — | — | — | — | — | — | — | — | — |
Spreadsheets | 2 | — | — | — | — | — | Yes | — | — | — | — | — | — | — | Yes | — | — |
Swift | 7 | Yes | — | — | — | — | Yes | Yes | Yes | Yes | — | Yes | Yes | — | — | — | Block-structured |
Tcl with Snit extension | 3 | — | — | — | — | — | Yes | — | — | Yes | — | — | Yes | — | — | — | — |
Visual Basic .NET | 6 (7) | Yes | — | Library | — | — | Yes | — | Yes | Yes | — | Yes | Yes | — | — | — | Reactive |
Windows PowerShell | 6 | — | — | — | — | — | Yes | — | Yes | Yes | — | Yes | Yes | Yes | — | — | — |
Wolfram Language & Mathematica | 13 |
Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | — | Yes | Knowledge Based |
See also
- Programming paradigm
- List of programming languages by type
- Domain-specific language
- Domain-specific multimodeling
Notes
- rendezvous and monitor-like based
- class-based
- template metaprogramming
- using TPL Dataflow
- only lambda support (lazy functional programming)
- using Reactive Extensions (Rx)
- multiple dispatch, method combinations
- actor programming
- promises, native extensions
- using Node.js' cluster module or child_process.fork method, web workers in the browser, etc.
- Prototype-based
- using Reactive Extensions (RxJS)
- in Node.js via their events module
- in browsers via their native EventTarget API
- purely functional
- parameterized classes
- immutable
- multiple dispatch, not traditional single
- Akka Archived 2013-01-19 at the Wayback Machine
Citations
- Bragg, S.D.; Driskill, C.G. (20–22 September 1994). "Diagrammatic-graphical programming languages and DoD-STD-2167A". Proceedings of AUTOTESTCON '94 (IEEEXplore). Institute of Electrical and Electronics Engineers (IEEE). pp. 211–220. doi:10.1109/AUTEST.1994.381508. ISBN 978-0-7803-1910-3. S2CID 62509261.
- Ada Reference Manual, ISO/IEC 8652:2005(E) Ed. 3, Section 9: Tasks and Synchronization
- Ada Reference Manual, ISO/IEC 8652:2005(E) Ed. 3 Annex E: Distributed Systems
- Ada Reference Manual, ISO/IEC 8652:2005(E) Ed. 3, Section 12: Generic Units
- Ada Reference Manual, ISO/IEC 8652:2005(E) Ed. 3, Section 6: Subprograms
- Ada Reference Manual, ISO/IEC 8652:2005(E) Ed. 3, 3.9 Tagged Types and Type Extensions
- Thread support
- Atomics support
- Memory model
- Gecode
- SystemC
- Boost.Iostreams
- Boolinq
- "AraRat" (PDF). Archived from the original (PDF) on 2019-08-19. Retrieved 2019-09-15.
- OpenMPI
- Boost.MPI
- Boost.MPL
- LC++
- Castor Archived 2013-01-25 at the Wayback Machine
- Reflect Library
- N3534
- Boost.Spirit
- Clojure - Concurrent Programming
- Clojure - core.async
- Clojure - Functional Programming
- Clojure - Macros
- Clojure - core.logic
- Clojure - Threading Macros Guide
- "Light Table". 2019-04-08.
- Multimethods and Hierarchies
- Agents and Asynchronous Actions
- many concurrency paradigms implemented as language extensions
- constraint programming inside CL through extensions
- dataflow extension
- by creating DSLs using the built-in metaprogramming; also see note on functional, constraint and logic paradigms, which are part of declarative
- MPI, etc via language extensions
- template metaprogramming using macros (see C++)
- Prolog implemented as a language extension
- Common Lisp Object System see Wikipedia article on CLOS, the Common Lisp Object System.
- implemented by the user via a short macro, example of implementation
- - Visual programming tool based on Common Lisp
- rule-based programming extension
- Archived 2018-04-26 at the Wayback Machine through the Meta Object Protocol
- D Language Feature Table
- Phobos std.algorithm
- D language String Mixins
- The Little JavaScripter demonstrates fundamental commonality with Scheme, a functional language.
- Object-Oriented Programming in JavaScript Archived 2019-02-10 at the Wayback Machine gives an overview of object-oriented programming techniques in JavaScript.
- "React – A JavaScript library for building user interfaces". 2019-04-08.
- "TNG-Hooks". GitHub. 2019-04-08.
- "Lodash documentation". 2019-04-08.
- "mori". 2019-04-08.
- "Light Table". 2019-04-08.
- "TNG-Hooks". GitHub. 2019-04-08.
- "Prolog embedding". Haskell.org.
- "Functional Reactive Programming". HaskellWiki.
- Cloud Haskell
- "Template Haskell". HaskellWiki.
- "Logict: A backtracking logic-programming monad". Haskell.org.
- Kollmansberger, Steve; Erwig, Martin (30 May 2006). "Haskell Rules: Embedding Rule Systems in Haskell" (PDF). Oregon State University.
- https://jcp.org/en/jsr/detail?id=331 JSR 331: Constraint Programming API
- https://github.com/GoogleCloudPlatform/DataflowJavaSDK Google Cloud Platform Dataflow SDK
- "JuliaOpt/JuMP.jl". GitHub. JuliaOpt. 11 February 2020. Retrieved 12 February 2020.
- "GitHub - MikeInnes/DataFlow.jl". GitHub. 2019-01-15.
- "GitHub - JuliaGizmos/Reactive.jl: Reactive programming primitives for Julia". GitHub. 2018-12-28.
- https://github.com/davidanthoff/Query.jl Query almost anything in julia
- https://github.com/lilinjn/LilKanren.jl A collection of Kanren implementations in Julia
- "GitHub - abeschneider/PEGParser.jl: PEG Parser for Julia". GitHub. 2018-12-03.
- "GitHub - gitfoxi/Parsimonious.jl: A PEG parser generator for Julia". GitHub. 2017-08-03.
- Lazy https://github.com/MikeInnes/Lazy.jl
- "Execute loop iterations in parallel". mathworks.com. Retrieved 21 October 2016.
- "Write Constraints". mathworks.com. Retrieved 21 October 2016.
- "Getting Started with SimEvents". mathworks.com. Retrieved 21 October 2016.
- "Execute loop iterations in parallel". mathworks.com. Retrieved 21 October 2016.
- "Execute MATLAB expression in text - MATLAB eval". mathworks.com. Retrieved 21 October 2016.
- "Determine class of object". mathworks.com. Retrieved 21 October 2016.
- "Class Metadata". mathworks.com. Retrieved 21 October 2016.
- "Object-Oriented Programming". mathworks.com. Retrieved 21 October 2016.
- "Simulink". mathworks.com. Retrieved 21 October 2016.
- interpreter based threads
- Higher Order Perl
- PHP Manual, Chapter 17. Functions
- PHP Manual, Chapter 19. Classes and Objects (PHP 5)
- PHP Manual, Anonymous functions
- "Parallel Processing and Multiprocessing in Python". Python Wiki. Retrieved 21 October 2016.
- "threading — Higher-level threading interface". docs.python.org. Retrieved 21 October 2016.
- "python-constraint". pypi.python.org. Retrieved 21 October 2016.
- "DistributedProgramming". Python Wiki. Retrieved 21 October 2016.
- "Chapter 9. Metaprogramming". chimera.labs.oreilly.com. Archived from the original on 23 October 2016. Retrieved 22 October 2016.
- "Metaprogramming". readthedocs.io. Retrieved 22 October 2016.
- "PEP 443 – Single-dispatch generic functions". python.org. Retrieved 22 October 2016.
- "PEP 484 – Type Hints". python.org. Retrieved 22 October 2016.
- "PyDatalog". Retrieved 22 October 2016.
- "Light Table". 2019-04-08.
- "Futureverse".
- "future batchtools".
- "Magrittr: A Forward Pipe Operator for R". cran.r-project.org\access-date=13 July 2017. 17 November 2020.
- Racket Guide: Concurrency and Synchronization
- The Rosette Guide
- FrTime: A Language for Reactive Programs
- Racket Guide: Distributed Places
- Lazy Racket
- Channels and other mechanisms
- "Problem Solver module".
- Feed operator
- https://github.com/perl6/doc/issues/1744#issuecomment-360565196 Cro module
- "Meta-programming: What, why and how". 2011-12-14.
- https://perl6advent.wordpress.com/2009/12/18/day-18-roles/ Parametrized Roles
- "Meta-object protocol (MOP)".
- https://docs.perl6.org/language/classtut Classes and Roles
- "The Rust macros guide". Rust. Retrieved 19 January 2015.
- "The Rust compiler plugins guide". Rust. Retrieved 19 January 2015.
- The Rust Reference §6.1.3.1
- An Overview of the Scala Programming Language
- Scala Language Specification
- "Tcl Programming/Introduction". en.wikibooks.org. Retrieved 22 October 2016.
- "TCLLIB - Tcl Standard Library: snitfaq". sourceforge.net. Retrieved 22 October 2016.
- Notes for Programming Language Experts, Wolfram Language Documentation.
- External Programs, Wolfram Language Documentation.
References
- Jim Coplien, Multiparadigm Design for C++, Addison-Wesley Professional, 1998.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.